Blockchain Based Smart Contract Secure Charity System

Group 7
Zhehao Fan, Tinghui Wu,
Rundong Liang, Kaiyi Chen

Contents:

- Introduction
- Problem statement
- System model and flow chart
- Network model
- Functions and demonstration
- Security and threat model
- Conclusion

Introduction

Smart Contract:

A smart contract is a self-executing computer program that can automatically execute the code within it without any human intervention

The advantages of smart contract:

- 1. Automated execution
- 2. Decentralized
- 3. Tamper-proof

The Implementation Challenges

- 1. Scalability problem: inability to meet the needs of highly concurrent scenarios
- 2. Security issues: vulnerability attacks, code errors, malicious contracts.

Problem Statement

Traditional charities often suffer from lack of trust

- 1. Non-transparent financial management
- 2. Corruption

3. Information asymmetry

Public Trust 1: How can we rebuild public trust in charities? - Charity Commission (blog.gov.uk)

Smart Contract in Charity System

- 1. Smart contracts enable transparency and fairness in donations to charities.
- 2. The tamper-evident nature of smart contracts provides a higher level of trust for donors.
- 3. Smart contracts can effectively manage and track the flow of funds and expenditures of charities

System Model

Flow Chart

Beneficiaries get donated:

Flow Chart

Beneficiaries post donate request:

Flow Chart

Feedback loop:

Network Model

Functions

- Donators donate money or items to stores
- Beneficiaries request donations from stores
- Stores can receive donations from donators and distribute them to beneficiaries.
- Adding credit score for beneficiaries

1. Brute force attack: Try to use all possible private keys to verify the signature or generate a fake signature

https://www.cloudflare.com/learning/bots/brute-force-attack/

2. Random number attack: Crack the random number generation algorithm to predict the next random number.

HMAC_DRBG HASH DRBG

3. Man-in-the-middle attack: Tampering, forging public keys or signatures to deceive the verifier.

Digital certificates can be used to verify that both parties to a communication are legitimate and trustworthy

4. Distributed Denial of Service attack: Overload the server or network resources by sending requests to the target server or network with a large amount of malicious traffic.

Restrict access to smart contracts to authenticated

users or nodes

5. 51% attack: The attacker controls more than 51% of the blockchain network computing power and is thus able to tamper with transaction records

PoA's authentication nodes consist of trusted entities, thus providing greater security and assurance

Conclusion

MileStone:

2. Complete smart contract components using digital signature algorithm.

Remaining Works:

- 1. Enhance security features to mitigate potential attacks, such as Man-in-the-middle attack
- 2. Conduct further experiments to validate users
- 3. Further develop front-end

Thank you

